==install== *pip install *conda install ==basics== ==neural theory== *dropout: https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf *cross entropy: http://colah.github.io/posts/2015-09-Visual-Information/ *softmax: https://en.wikipedia.org/wiki/Softmax_function *max spooling: *convolution: *conv stride: *conv padding: ==ML learning== *perception learning(liner separable): w' = w + yx *k-nearest neighbour (Euclidean Distance) *linear classifier Wx+b *Hinge Loss(SVM) Loss=Sigma(max(0,sj-sy+1)) *Weight Regulariztion (L2) R(w)=sigma(k)simga(l)|Wk,l| *Cross-Entropy Loss(Softmax) Classifier = sigma(correct(normalize(exponential)))=0~inf *mini-batch gradient descent (maybe with momenton) *learning rate decay *computational graph *back propagation (calculating gradient) (add gate = gradient distributor, max gate = gradient router, mul gate = gradiet.. 'switcher') *Jacobian Matrix (gradient matrix (n input,m output, m*n sized) but you don't need to form.) ===activation function=== *sigmoid activation function. *tanh activation function *ReLU activation function, max(0,x) *Leaky ReLU activation function, max(0.1x, x) *Maxout activation function *ELU activation function ==dataset== http://www.iis.ee.ic.ac.uk/icvl/ges_db.htm http://www.cs.nyu.edu/~roweis/data.html upsd digits: http://cs.nyu.edu/~roweis/data/_old_list KITTI CARS: http://www.cvlibs.net/datasets/kitti/eval_object.php